ON k-SEMI-PERFECT 1-FACTORIZATIONS OF Q_n AND CRAFT’S CONJECTURE

VASIL S. GOCHEV AND IVAN S. GOTCHEV

ABSTRACT. Let $n \geq 2$, G be an n-regular graph and $1 \leq k \leq n-1$. An 1-factorization of the graph G into 1-factors F_1, \ldots, F_n shall be called k-semi-perfect, if $F_i \cup F_j$ forms a Hamiltonian cycle for every $1 \leq i \leq k$ and every $k+1 \leq j \leq n$.

The following results about the binary hypercube Q_n are proved in this paper:

Theorem 1. (a) If $k = 1$ or $k = 5$ and $p \geq 1$ then there exists a k-semi-perfect 1-factorization of Q_{k+2p}.
(b) If $k \geq 1$ and $p \geq 1$ then there exists a $2k$-semi-perfect 1-factorization of Q_{2k+2p}.

Theorem 2. Let $n \geq 3$ and F be a set of edges in Q_n. Assume also that either
(a) n is odd and $0 \leq |F| \leq n-2$; or
(b) n is even and $1 \leq |F| \leq n-2$.

Then there exist at least $k = n - |F| - 1$ Hamiltonian cycles in $Q_n - F$ that intersect on a perfect matching.

Also, a solution of Craft’s conjecture for the case $n = 6$ is provided and a conjecture that implies Craft’s conjecture for every $n \geq 5$ is formulated.

1. Introduction

Let G be a simple graph. G is decomposable into Hamiltonian cycles if there exist edge-disjoint Hamiltonian cycles which union covers all edges of G. A set M of edges of G is called matching if every vertex of G is incident with at most one edge of M. A vertex v of G is covered by M if v is incident with an edge of M. A matching M is called perfect if every vertex of G is covered by M. Perfect matchings are also called 1-factors. A proper edge coloring of G is an edge coloring for which every two edges with a common vertex have different colors. Clearly, if G is n-regular (every vertex is incident to exactly n edges) and properly colored with n different colors, then every color class,

2000 Mathematics Subject Classification. Primary 05C38; Secondary 05C45, 05C70, 68R10, 68M15.

Key words and phrases. Hamiltonian graph, Hamiltonian cycle, Hypercube, 1-factor, 1-factorization, k-semi-perfect factorization.
i.e. all edges colored in one fixed color, is a perfect matching of \(G \), or equivalently, 1-factor. A proper edge coloring of an \(n \)-regular graph \(G \) with \(n \) colors is also called \(1 \)-factorization. An 1-factorization is called \textit{perfect} if the union of any two 1-factors (color classes, perfect matchings) is a Hamiltonian cycle. An 1-factorization of \(G \) into 1-factors \(F_1, \ldots, F_n \) is called \textit{semi-perfect} if \(F_i \cup F_j \) forms a Hamiltonian cycle for any \(1 < i < j < n \).

We extend the definition of semi-perfect 1-factorization as follows.

Definition 1.1. Let \(n \geq 2 \), \(G \) be an \(n \)-regular graph and \(1 \leq k \leq n-1 \). An 1-factorization of the graph \(G \) into 1-factors \(F_1, \ldots, F_n \) shall be called \(k \)-semi-perfect, if \(F_i \cup F_j \) forms a Hamiltonian cycle for every \(1 \leq i \leq k \) and every \(k+1 \leq j \leq n \).

It is clear from the definition that an 1-factorization is \(k \)-semi-perfect if and only if it is \((n-k)\)-semi-perfect. Also, in our terminology, the \(1 \)-semi-perfect 1-factorizations (or, equivalently, the \((n-1)\)-semi-perfect 1-factorizations) are the well-known semi-perfect 1-factorizations.

The question of existence of perfect or semi-perfect 1-factorizations for different graphs \(G \) has been extensively studied (see [MR], [P], [K]). In this paper we study the existence of \(k \)-semi-perfect 1-factorizations for the \(n \)-regular graph \(Q_n \), where \(n \geq 2 \). We recall that the \(n \)-dimensional binary hypercube \(Q_n \) is the graph whose vertices are the binary sequences of length \(n \) and whose edges are pairs of binary sequences that differ in exactly one position. All edges that connect vertices that differ at a given position \(i \), \(1 \leq i \leq n \), are called \textit{parallel} and define a \textit{direction} that we denote also by \(i \).

2. On Craft’s conjecture

In 1995 David Craft formulated the following conjecture (see [C]):

Conjecture 2.1 (D. Craft). For each integer \(n \geq 2 \) there is a semi-perfect 1-factorization of \(Q_n \).

The following theorem settles Craft’s conjecture for odd \(n \). \(^1\)

Theorem 2.2. If \(n \geq 3 \) is odd then there exists 1-semi-perfect 1-factorization of \(Q_n \).

Proof. In what follows we shall use the following well-known fact: For any \(p \geq 1 \) the hypercube \(Q_{2p} \) is decomposable into \(p \) Hamiltonian cycles ([ABS], [B]).

\(^1\)We are grateful to Dan Archdeacon for helpful e-mail correspondence and to Giuseppe Mazzuoccolo who informed us, while we were writing this paper, that a proof of Craft’s conjecture for the case when \(n \) is odd appeared already in [KK].
Let \(n = 2p + 1 \geq 3 \). It is convenient to view the hypercube \(Q_{2p+1} \) as two copies \(Q_{2p}^0 \) and \(Q_{2p}^1 \) of the \(2p \)-dimensional hypercube \(Q_{2p} \) such that every vertex \(v^0 \) in \(Q_{2p}^0 \) is connected by an edge to the vertex \(v^1 \) in \(Q_{2p}^1 \) which is the same binary sequence of length \(2p \) as \(v^0 \). Clearly, the set \(M \) of all edges from \(Q_n \) that connect vertices from \(Q_{2p}^0 \) and \(Q_{2p}^1 \) form an 1-factor of \(Q_n \).

Let \(H_1, H_2, \ldots, H_p \) be a decomposition of \(Q_{2p} \) into \(p \) Hamiltonian cycles and let \(H_1^i, H_2^i, \ldots, H_p^i \) be the corresponding Hamiltonian decomposition of \(Q_{2p} \), \(i \in \{0, 1\} \). Every Hamiltonian cycle \(H_j, 1 \leq j \leq p \) defines in a natural way two 1-factors \(H_j(o) \) and \(H_j(e) \) in \(Q_{2p} \). (Starting from an edge, follow the cycle \(H_j \) (which has an even number of edges) and enumerate all edges. Then take for \(H_j(o) \) all odd-numbered edges and for \(H_j(e) \) all even-numbered edges.) Let \(H_1^i(x), H_2^i(x), \ldots, H_p^i(x), \) \(x \in \{o,e\}, i \in \{0,1\}, \) be the corresponding sets of 1-factors of \(Q_{2p}^i \), \(i \in \{0,1\} \) defined by \(H_1, H_2, \ldots, H_p \). Then

\[
\{ M, H_1^0(o) \cup H_1^1(e), H_1^0(e) \cup H_1^1(o), \ldots, H_p^0(o) \cup H_p^1(e), H_p^0(e) \cup H_p^1(o) \}
\]

form the required 1-semi-perfect 1-factorization of \(Q_n \) for the union of \(M \) and any other 1-factor forms a Hamiltonian cycle.

Semi-perfect 1-factorization of \(Q_3 \) and \(Q_4 \) were known to D. Craft. Using a computer program we were able to find all semi-perfect 1-factorizations of \(Q_4 \) and many different semi-perfect 1-factorizations of \(Q_6 \). One of those semi-perfect 1-factorizations of \(Q_6 \) is given in Appendix A, where each \(F_i \), \(1 \leq i \leq 6 \), is a perfect matching of \(Q_6 \) and \(F_2 \cup F_3 \), \(2 \leq i \leq 6 \), is a Hamiltonian cycle of \(Q_6 \). Since all edges in \(F_i \) are parallel to one direction, it easily follows that the projections parallel to that direction of all edges from \(F_i \), \(2 \leq i \leq 6 \), onto \(Q_5 \), form a Hamiltonian cycle of \(Q_5 \). Therefore there exist two partitions of the set of edges of \(Q_5 \) into perfect matchings \(\{M_1, M_2, \ldots, M_5\} \) and \(\{N_1, N_2, \ldots, N_5\} \) such that \(M_i \cup N_i \) forms a Hamiltonian cycle for each \(1 \leq i \leq 5 \). It is interesting to note that a semi-perfect 1-factorization of \(Q_4 \) with a perfect matching, all edges of which are parallel to one direction, does not exist; or equivalently, two partitions of the set of edges of \(Q_3 \) into perfect matchings \(\{M_1, M_2, M_3\} \) and \(\{N_1, N_2, N_3\} \) such that \(M_i \cup N_i \) forms a Hamiltonian cycle for each \(1 \leq i \leq 3 \), do not exist.

Since for any \(p \geq 1 \) the hypercube \(Q_{2p} \) is decomposable into \(p \) Hamiltonian cycles, it easily follows that for every even \(n \geq 2 \) there exist two partitions of the set of edges of \(Q_n \) into perfect matchings \(\{M_1, M_2, \ldots, M_n\} \) and \(\{N_1, N_2, \ldots, N_n\} \) such that \(M_i \cup N_i \) forms a
Hamiltonian cycle for each $1 \leq i \leq n$. Based on the above observations we state the following conjecture.

Conjecture 2.3. Let $n = 2$ or $n \geq 4$. Then there exist two 1-factorizations $\{M_1, M_2, \ldots, M_n\}$ and $\{N_1, N_2, \ldots, N_n\}$ of Q_n such that $M_i \cup N_i$ forms a Hamiltonian cycle for each $1 \leq i \leq n$.

We emphasize again that the above conjecture is a theorem for every even positive integer n and for $n = 5$, but it is not true for $n = 3$. Also, Craft’s conjecture (for $n \geq 5$) is an easy corollary from it.

3. On k-semi-perfect 1-factorizations of Q_n

Another corollary of Conjecture 2.3 is the following.

Theorem 3.1. Let $k \geq 2$, $p \geq 1$ be two integers and let Conjecture 2.3 hold true for k. Then there exists a k-semi-perfect 1-factorization of Q_{k+2p}.

Proof. It is convenient to view the n-dimensional hypercube Q_{k+2p} as a $2p$-dimensional hypercube Q_{2p} which “vertices” are k-dimensional hypercubes Q_k (i.e. we view Q_{k+2p} as a Cartesian product of Q_{2p} and Q_k). We enumerate all vertices of Q_{2p} from 1 to 2^{2p} (we take the binary representation of each vertex plus one) and we denote by Q_k, $1 \leq i \leq 2^{2p}$, the k-dimensional hypercube which is in the “vertex” of Q_{2p} numbered i. Also, we enumerate all vertices of Q_k from 1 to 2^k (the binary representation of each vertex plus one) and for each $1 \leq i \leq 2^{2p}$ we take that same enumeration of the vertices in Q_k.

Let H_1, H_2, \ldots, H_p be a decomposition of Q_{2p} into p Hamiltonian cycles. For convenience, we enumerate the edges of each such Hamiltonian cycle starting from an edge that contains the vertex numbered 1. Then every Hamiltonian cycle H_j, $1 \leq j \leq p$ defines in a natural way two 1-factors $H_j(o)$ and $H_j(e)$ in Q_{2p}. Let $\{H_1(x), H_2(x), \ldots, H_p(x)\}$, $x \in \{o, e\}$, be the corresponding two sets of 1-factors of Q_{2p} defined by H_1, H_2, \ldots, H_p.

Let also $\{L_1(x), L_2(x), \ldots, L_k(x)\}$, $x \in \{o, e\}$ be two 1-factorizations of Q_k such that $L_r := L_r(e) \cup L_r(o)$ is a Hamiltonian cycle for each $1 \leq r \leq k$ and let $\{L_1^i(x), L_2^i(x), \ldots, L_k^i(x)\}$, $x \in \{o, e\}$, be the corresponding two sets of 1-factors of Q_k, $1 \leq i \leq 2^{2p}$, defined by $L_1(x), L_2(x), \ldots, L_k(x)$.

We define the first set of k 1-factors of Q_{k+2p} in the following way:

$$M_r := L_r^1(e) \cup \bigcup_{2 \leq i \leq 2^{2p}} L_r^i(o), 1 \leq r \leq k.$$

Since Q_{2p} is a bipartite graph, and according to our enumeration of the edges, each edge in $H_i(e)$, following the cycle H_i, connects even
numbered vertices \(i_1 \) in \(Q_{2p} \) (that could be considered as vertices in \(Q_k \)) to odd numbered vertices \(i_2 \) in \(Q_{2p} \) (that could be considered as vertices in \(Q_k \)), and that each edge in \(H_t(o) \), following the cycle \(H_t \), connects odd numbered vertices \(i_1 \) in \(Q_{2p} \) to even numbered vertices \(i_2 \) in \(Q_{2p} \). Notice also that for each \(j \), \(1 \leq j \leq p \), each edge in \(H_j(e) \) and \(H_j(o) \) corresponds to \(2^k \) edges in \(Q_n \). Let \(H_j(x,y) \) be the set of all edges in \(Q_n \) corresponding to such edges from \(H_j(x) \) that, following the cycle \(H_j \), begin from a vertex with parity \(y \) in \(Q_k \) whenever \(i \) has parity \(x \), where \(1 \leq i \leq 2^p \).

Now we define the second set of \(2p \) 1-factors in the following way:

\[
N_j(y) := H_j(e, y) \cup H_j(o, y), \quad 1 \leq j \leq p, \quad y \in \{e, o\}.
\]

It follows from the definitions that

\[
\mathcal{F} := \bigcup \{M_r : 1 \leq r \leq k\} \cup \bigcup \{\{N_j(e), N_j(o)\} : 1 \leq j \leq p\}
\]

is a set of \(k + 2p \) pairwise disjoint 1-factors. To finish the proof we need to show that \(\mathcal{F} \) is a \(k \)-semi-perfect 1-factorization for \(Q_{k+2p} \), i.e. that \(M_r \cup N_j(y) \) is a Hamiltonian cycle for each \(1 \leq r \leq k \), each \(y \in \{e, o\} \) and each \(1 \leq j \leq p \).

We fix \(1 \leq r \leq k \), \(y \in \{e, o\} \) and \(1 \leq j \leq p \). We shall show that \(C := M_r \cup N_j(y) \) is a Hamiltonian cycle.

Below if \(v \) is a vertex in \(Q_k \) numbered \(s \) then the corresponding vertex in \(Q_k \) is denoted by \(s(i) \).

Let \(1 = s_1, s_2, \ldots, s_{2k} \) be the sequence of numbers of the vertices in \(Q_k \) beginning from 1 that represents the cycle \(L_r \). We can arrange (by changing the direction, if necessary) that the edge \((s_1(1), s_2(1))\) does not belong to \(C \). Let \(1 = q_1, q_2, \ldots, q_{2^p} \) be a sequence of numbers of the vertices in \(Q_{2p} \) beginning from 1 that represents the cycle \(H_j \). If the edge \((s_1(1), s_1(q_2))\) belongs to \(C \), then the following vertices belong to \(C \) and the edges between them form a path:

\[
s_1(1), s_1(q_2), s_2(q_2), s_2(q_3), s_1(q_3), \ldots, s_1(q_{2^p}), s_2(q_{2^p}), s_2(1), s_3(1).
\]

The length of this path is \(2^{2p+1} \) and it contains all vertices of the type \(s_1(q_i) \) and \(s_2(g_i) \), where \(1 \leq i \leq 2^p \), and connects \(s_1(1) \) with \(s_3(1) \). Using similar paths we can connect \(s_3(1) \) with \(s_5(1) \), and so on, \(s_{2k-1}(1) \) with \(s_1(1) \). There are \(2^{k-1} \) such paths which are edge disjoint. All these paths form a Hamiltonian cycle of \(Q_{k+2p} \) that coincides with \(C \).

In a similar way, if the edge \((s_1(1), s_1(q_2))\) does not belong to \(C \), then \((s_2(1), s_2(q_2))\) belongs to \(C \). Then the following vertices belong to \(C \) and the edges between them form a path:

\[
s_2(1), s_2(q_2), s_1(q_2), s_1(q_3), s_2(q_3), \ldots, s_2(q_{2^p}), s_1(q_{2^p}), s_1(1), s_{2k}(1).
\]
The length of this path is 2^{2p+1} and it contains all vertices of the type $s_1(q_i)$ and $s_2(q_i)$, where $1 \leq i \leq 2^{2p}$, and connects $s_2(1)$ with $s_{2k}(1)$. Using similar paths we can connect $s_{2k}(1)$ with $s_{2k-1}(1)$, and so on, $s_4(1)$ with $s_2(1)$. There are 2^{k-1} such paths which are edge disjoint. All these paths form a Hamiltonian cycle of Q_{k+2p} that coincides with C. □

As a corollary of the above theorem we obtain the following.

Corollary 3.2. (a) If $n \geq 4$ is even then for every even k, $2 \leq k \leq n-2$, there exists a k-semi-perfect 1-factorization of Q_n.

(b) If $p \geq 1$ then there exists a 5-semi-perfect 1-factorization of Q_{5+2p}.

Using (a) of the above corollary, Theorem 2.2 and some observations from the proof of Theorem 3.1 we prove the following.

Theorem 3.3. Let $n \geq 3$ and F be a set of edges in Q_n. Assume also that either

(a) n is odd and $0 \leq |F| \leq n-2$; or

(b) n is even and $1 \leq |F| \leq n-2$.

Then there exist at least $k = n - |F| - 1$ Hamiltonian cycles in $Q_n - F$ that intersect on a perfect matching.

Proof. (a) Let $n \geq 3$ be odd. Then, according to Theorem 2.2, there exists 1-semi-perfect 1-factorization of Q_n. From its proof we know that one of the 1-factors (say M) could be chosen such that all of its edges to be parallel to a chosen direction. We choose a direction in which there are no deleted edges (clearly such a direction exists). Since there are only $|F|$ deleted edges, at least $k = n - |F| - 1 \geq 1$ of the remaining 1-factors do not contain deleted edges. Each one of these 1-factors together with M forms a Hamiltonian cycle of $Q_n - F$. Therefore there are at least k Hamiltonian cycles of $Q_n - F$ that intersect on the perfect matching M.

(b) Let $n \geq 4$ be even. Since $1 \leq |F| \leq n-2$ there exists at least one direction i_1 such that there is an edge in F parallel to that direction. Also, there exists a direction i_2 such that no edge in F is parallel to that direction. Now, as in the proof of Theorem 3.1, we view the n-dimensional hypercube Q_n as an $n-2$-dimensional hypercube Q_{n-2} which “vertices” are 2-dimensional hypercubes Q_2 (i.e. we view Q_n as a Cartesian product of Q_{n-2} and Q_2). Clearly, we can arrange i_1 and i_2 to belong to Q_2. Then, according to Theorem 3.1, there exists a 2-semi-perfect 1-factorization of Q_n. Since $2^{n-2} > n-2$ there exists a vertex in Q_{n-2} such that no edge from F belongs to its “vertex” Q_2.

Therefore, if in the proof of Theorem 3.1 we begin the enumeration of the vertices of Q_{n-2} from that particular vertex then one of the two 1-factors

$$M(x) := L^1(x) \cup \bigcup_{2 \leq i \leq 2^{n-2}} L^i(x), \; x \in \{e, o\}.$$

will not contain edges from F. Denote that 1-factor by M. Since there are only $|\mathcal{F}|$ deleted edges, at least $k = n - |\mathcal{F}| - 1 \geq 1$ of the $n - 2$ 1-factors defined in the proof of Theorem 3.1 by

$$N_j(y) := H_j(e, y) \cup H_j(o, y), \; 1 \leq j \leq \frac{n-2}{2}, \; y \in \{e, o\}$$

do not contain deleted edges. Each one of these 1-factors together with M forms a Hamiltonian cycle of $Q_n - \mathcal{F}$. Therefore there are at least k Hamiltonian cycles of $Q_n - \mathcal{F}$ that intersect on the perfect matching M.

As a direct corollary of Theorem 3.3 we obtain the following result (see [LZB] and [SSB]).

Corollary 3.4. Let $n \geq 2$ and \mathcal{F} be a set of up to $n - 2$ edges in Q_n. Then $Q_n - \mathcal{F}$ is Hamiltonian.

Appendix A. Solution of Craft’s conjecture for $n = 6$

Below we provide one of the solutions of Craft’s conjecture for $n = 6$. Since F_1, \ldots, F_6 form an 1-factorization of Q_6, the enumeration of the vertices of Q_6 from 1 to 64 should be clear. The 1-factor that forms a Hamiltonian cycle with any other 1-factor is F_1.

- $F_1 = \{(1, 17), (2, 18), (3, 19), (4, 20), (5, 21), (6, 22), (7, 23), (8, 24), (9, 25), (10, 26), (11, 27), (12, 28), (13, 29), (14, 30), (15, 31), (16, 32), (33, 49), (34, 50), (35, 51), (36, 52), (37, 53), (38, 54), (39, 55), (40, 56), (41, 57), (42, 58), (43, 59), (44, 60), (45, 61), (46, 62), (47, 63), (48, 64)\};

- $F_2 = \{(1, 2), (3, 4), (5, 6), (7, 8), (9, 10), (11, 12), (13, 14), (15, 16), (17, 19), (18, 24), (20, 22), (21, 29), (23, 39), (25, 27), (26, 32), (28, 30), (31, 47), (33, 35), (34, 42), (36, 44), (37, 45), (38, 40), (41, 43), (46, 48), (49, 50), (51, 53), (52, 54), (55, 56), (57, 58), (59, 60), (61, 62), (63, 64)\};$

- $F_3 = \{(1, 3), (2, 4), (5, 7), (6, 8), (9, 11), (10, 12), (13, 15), (14, 16), (17, 18), (19, 21), (20, 36), (22, 38), (23, 24), (25, 31), (26, 42), (27, 28), (29, 30), (32, 48), (33, 41), (34, 40), (35, 37), (39, 47), (43, 44), (45, 46), (49, 51), (50, 52), (53, 55), (54, 62), (56, 64), (57, 59), (58, 60), (61, 63)\};$

- $F_4 = \{(1, 7), (2, 8), (3, 5), (4, 6), (9, 15), (10, 16), (11, 13), (12, 14), (17, 33), (18, 20), (19, 35), (21, 22), (23, 31), (24, 40), (25, 26), (27, 43), (28, 44), (29, 45), (30, 32), (34, 36), (37, 39), (38, 46), (41, 42), (47, 48), (49, 55), (50, 58), (51, 59), (52, 60), (53, 61), (54, 56), (57, 63), (62, 64)\};$
\[F_5 = \{(1, 9), (2, 10), (3, 11), (4, 12), (5, 13), (6, 14), (7, 15), (8, 16), (17, 23), (18, 34), (19, 20), (21, 37), (22, 24), (25, 41), (26, 28), (27, 29), (30, 46), (31, 32), (33, 39), (35, 43), (36, 38), (40, 48), (42, 44), (45, 47), (49, 57), (50, 56), (51, 52), (53, 54), (55, 63), (58, 64), (59, 61), (60, 62)\}; \\
F_6 = \{(1, 49), (2, 50), (3, 51), (4, 52), (5, 53), (6, 54), (7, 55), (8, 56), (9, 57), (10, 58), (11, 59), (12, 60), (13, 61), (14, 62), (15, 63), (16, 64), (17, 25), (18, 26), (19, 27), (20, 28), (21, 23), (22, 30), (24, 32), (29, 31), (33, 34), (35, 36), (37, 38), (39, 40), (41, 47), (42, 48), (43, 45), (44, 46)\}. \\

References

[C] Dan Archdeacon: Problems in Topological Graph Theory http://www.cems.uvm.edu/~archdeac/problems/perfectq.htm

